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Abstract

The process of phase correction for “emission line spectra with high signal-to-noise ratios has re-
mained an unresolved problem and critically defines the quality and reproducibility of the Fourier trans- ,
form emission spectra. Traditional methods utilize a low resolution phase spectrum and often produce
spectra that do not have reproducible line positions. A phase correction strategy has been developed
for and tested with infrared, visible, and UV emission line sources. A high resolution (64-80 K point
interferogram) phase spectrum provides the phase data. A discriminator is used to restrict the phase
data to those points that have sufficicnt signal-to-noise to obtain a reliable phase estimate, and a smooth
phase function is obtained by fitting a polynomia to the phase data. Quantitative estimates of the phase

error as a function of apodisation width, discriminator value, and order of polynomial used in the fitting
process arc presented.




L Introduction

A spectrum can be exactly reconstructed from an ideal, symmetric interferogram by means of the
cosine Fourier transform alone. In practice, sampled interferograms arc never entirely symmetric,
and complete reconstruction requires a complex Fourier transform. The required real spectrum is
recovered from the complex spectrum either by applying a phase correction or by taking the modulus,
and it will be shown later that the first of these alternatives is preferable.

Asymmetry in the rccorded interferogram may arise from a combination of several effects. First,
neither the apodising function (including the truncation of the interferogram) nor the signal intensity
arc nccessarily symmetric about zero path difference. Second, the centre of the zero path fringe of a
symmetrically apodised interferogram may not (and usually does not) coincide exactly with one of the
points at which the interferogram is sampled. Third, any dispersive effects will make the optical path
difference frequency dependent so that there is no well defined position of zero path difference. Such
dispersive eflects maybe optical - small differences in the beamsplitter and compensator thickness, for
example - or electrical - frequency dependent delays in the amplifying and filtering electronics. When
dispersion is present the brightest fringe, sometimes called the ‘ grand maximum’, is taken as the centre,
but the interferogram is not symmetric about this point.

The effect of an asymmetric apodising function 7°(x) is to convolve the transformed spectrum with
acomplex instrument function ¢(¢), where

1(0) = t,(0)+ ita(0). (1)

Sincc 7'(z) is - at least in principle - under the control of the operator, we start by taking it to be
symmetric (i.e. 1, (¢) = O). The other two effects arc taken into account by writing the modulated part
of theinterfecrogram as

I(X) = ] A(0) cos[2no(z — €) -t Y(0o))do 2

where A(o) isthe source distribution, c isthe offset of the sampling grid, and (¢) isthe dispersive
phase. If the latter is the result of an refractive optical path mismatch é it takes the form (¢) =
2no[n(o) — 16, where n is the refractive index of the beamsplitter material. In general onc assumes
that the functional form of 1 is not well known. The linear term 2ro¢ can be incorporated with ¢ to
give

1(z) = ] A(0) cos[2mox -t ¢(0)]do (3)
where ¢(o) = 2xoc + ¥(0).

The complex Fouricr transform of this function is
S(o) = ™) A(o). (4)

To recover the true spectrum A(u) from the observed spectrum S(e), wc need to determine ¢(o) ex-
perimentally and multiply through by e1¢(%): this is the process known as phase correction. If the
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interferometer iSto be used at or near its limit as a signal handling device (i.e., to give results limited in

quality only by source or detector noise), the phase correction must be determined with a precision that
greatly exceeds its day-to-day reproducibility. Phase correction must therefore be done-separately for
each observed interferogram (or co-added set) and must be deduced from the data contained within
the interferogram. When the effects of asymmetric apodisation are considered, it will be seen that a
‘single-sided’ interfcrogram is much more sensitive to errors in phase correction that is a ‘ double-sided

interferogram.

IL Basic approach to phase correction

a. Symmetric apodisation function

The phase ¢(o) is dways a slowly varying function of the wavenumber o, and the usual approach
isto determine tan ¢ from the ratio of the imaginary and real parts of the complex spectrum obtained
from a short section of the interferogram truncated symmetrically about the centre.

Intensity and resolution criteria have also been analysed by Brault [1] for both absorption and
cmission spectra. This distinction has relevance to the phase problem in two ways. The first is straight-
forward: in an absorption spectrum there is information at al frequencies, whereas in an emission spec-
trum there isinformation only at some frequencics, and that information can vary widely in quality. We
arc concerned here with a pure emission line spectrum - that is, onc where the energy is concentrated
entirely into the discrete lines. In this case the output of the transform in the gaps between the lines
is incoherent white noise in both the real and imaginary parts, both parts having the same root mean
square amplitude. The phase is undctermined: the mean value is arbitrary, and the RM S deviation
from that mean is 4:x/+/3 radians. Most of the spectral points contribute nothing to the phase data.
The phase is determined only at each line, and then only to a precision set by the signal to noise ratio
for that linc.

This problem cannot be overcome by adding a weak continuous spectrum to the input. The photon
noise associated with the total energy involved (individual channel energy times the very large number
of channels) degrades the entire spectrum and is not acceptable. Using the modulus of the spectrum
(equivalent to ignoring phase correction) aso degrades the signal to noise ratio.

In the case of an emission spectrum relatively fcw spectral points carry useful phase information
and an additional decision is required: the choice of the intensity below which phase information is not
significant. The choice of resolution is also of much greater significance.

The aim isto achicve a phase correction such that residual errors of phase degrade the spectrum by
an amount small compared with the noise. In some cases this can require the phase to be determined
with an error of the order of magnitude (in radians) of the reciprocal of the signal to noise ratio in the
computed spectrum -e.g. if the latter is 1000, the phase error should be less than -1 mrad.
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Wc need to consider first the errors 6(e) in the phase found from the truncated section and second
the effect on the final spectrum of phase correction with the function 4(0)+ é(¢). Brault [1] has shown
that for an emission linc at oo, the phase error is given by

tan[§(0)] ~ ¢'(0) - (¢ — 00) = (o) — ¢(a0) (5)

where ¢/(¢0) = 04(¢) /85 is the gradient of the phase at 0.8(c)is proportional to the rate of change
of the phase spectrum with frequency, if the truncation is short enough for the width of the instrument
function to exceed that of the emission line. This phase error is equal to the phase change across the
width of the instrument function, so that the phase is artificially flaticned within a region of significant
width. Evidently ¢’ can be minimized by shifting the origin to make the linear phase term equal to zero
in the spectral region of interest, regardless of whether this linear term comes from the grid displace-
ment € or from a linear term in the dispersive component. This is equivalent to choosing the origin to
be the point of stationary phase (to first order).

To get good phase data from emission spectra requires therefore that some discriminator (or highly
nonlinear weighting function) be used to eliminate the sea of phase noise lying between the lines.

The resulting phase data is a set of point values at arbitrary values of ¢, and some smoothing process
isrequired to link these to form an analytic function to be used for phase correction. The choice of
function is not critical; the optimum in terms of minimizing the number of parameters would be onc
that reflecicd the wave number dependance of the dispersive character of the components. In practice
wc have used a polynomial, as discussed in Section 111.

The second problem for emission spectra is more subtle and more of a nuisance. It concerns the
length of the symmetrically truncated central section of the interferogram used to determine the phase
function. As the length of this section decreases, the instrument profile in the Fourier transform broad-
ens. This is not of great significance in absorption spectra where the rate of change of intensity with
frequency is small. In emission spectra the intensity variation between lines may be as great as 10000:1.
Under these conditions the wing of an instrumentally broadened line profile may overwhelm the peak
of aweak line at another frequency. The phase information from the weak line will thus be replaced by
datafor aline at a different frequency, Examples are given in Section 3 that illustrate the necessity of
choosing the instrumental width in the low resolution spectrum to be very much smaller than the typical
interval between strong lines.

This need for anarrow instrumental width - that isfor afairly high low resolution apodisation -
means that the functions of phase determination and phase smoothing must be separate, A broad
instrument function cannot be used to smooth the phase data of an emission line spectrum.

b. Asymmetric apodisation function

The two extremes of apodisation arc nearly symmetric truncation (equal-sided interferograms)
and almost completely asymmetric truncation (unequal-sided interferograms or, in the limit; one-sided
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interferograms). The advantage of the latter is that it offers the maximum resolution for a given ob-
servation time, but, as shown below, it imposes more scvere restrictions on the accuracy to which ¢(e)
must be determined.

Truncation by an asymmetric function 7'(x) leads to a complex instrument function with alarge
imaginary part, which is necessarily antisymmetric. Suppose the interferogram is observed from —!to
+1. (I < L), and the portion from -1 to+/ is weighted onc half with respect to that from +1to +1L as
illustrated in Figure 1. Then the real part of the instrument function is the well-known sine function

(o) = Leine(2mo1) = 1,502771) (6)
and the imaginary part is the antisymmetric cosine function
ta(0) = Leosine(2no L) - lcosine(2nol); )
where in, analogy with the sine function,
cosine(2nol) = cos(2no L) /(270 ). (8)

If theinterferogram is nearly one-sided with 1<<1. then,

ta(0) — Leosine(2wo L) — 57];; = cos(2;r+:)—1“ (9)

Figure 2 illustrates symmetric and antisymmetric components of the apodisation function for an uncqual-
sided interferogram, and the complex instrument function in both the spatial and frequency domains.

Multiplication of the interferogram by the asymmetric truncation function 7'(x) leads to a convolution
of the spectrum with this complex instrument function

T(2)[(z) &3 [t,(u)+- ite(o)] * S(0). (lo)

If S(o) iswholly real (either because I(x) is completely symmetric or because the phase correction is
perfect), the real part of the convolution t,(o) x S(¢) gives the required spectrum and the imaginary
part can simply be discarded. The problem arises when the spectrum is imperfectly phase corrected,
For a small residua phase error é(¢),

Su) = A(o)e ) = A(o) cos 6 —iA(0) sin § ~ A(c) — i6 A(0). (11)

The real part of the convolut ion now contains two parts: the real parl of the spectrum convolved with the
symmetric part of the instrument function, and a second term which is the convolution of the imaginary
part of the spectrum with the antisymmetric instrumental profile t,(o):

Re[S(0) +1(0)] = A(@) * t,(0)+ [BA0)]* ta(0) (12)
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where 1,(c) is not small compared with t,(a). If § is small and eflectively constant over the instrument
profile, it can be taken out of the convolution to give

Re[S(0) ¥ 1(0)] = A(0) * [ts(0) + 6(0)ta(0)]. ‘ (13)

This asymmetric instrument function displaces and distorts all observed lines by an amount propor-
tional 1o the local phase error. For 1 = O and an unresolved line (sine profile) the wavenumber error
is 0.56 times the resolution clement and Brault has evaluated an equivalent shift for Lorentzian and
Gaussian line profiles of 0.506 and 0.486 .respectively.

In the intermediate case, O < I < L, the relative amplitude of the antisymmetric part of the instru-
ment function is of course reduced, but not in proportion to the double-sidedness. For a4:1 asymmetry
(I = L/4) the reduction in wavenumber shift for a given phase error is only 8%. In adouble-sided in-
terferogram the antisymmetric part of the interferogram approaches zero, and the sensitivity to phase
error is minimal. Phase correction in the equal-sided case gives, in effect, a +/2 gain in signal to noise
ratio. Thus, the procedure for determining the phase outlined at the beginning of this section uses a
symmetricaly truncated central section of the interferogram to avoid distortion from an asymmetric
instrument function.

111 Experimental data

A phase correction strategy derived from the previous paragraphs was developed for and tested
with infrared, visible, and UV emission line sources. The spectra considered here arc dominantly those
of the Iron-Argon or Iron-Neon hollow cathode and were taken to underpin a reobservation of the Fe
1 spectrum. A brief summary of the Fourier transform spectrometer, the light source, and the observed
spectrais therefore relevant.

TheFTS at the National Solar Observatory - Tucson, Az. isaonc metre Connes type Michelson
interferometer with complementary inputs and outputs.

Typical parameters for an observing run at NSO were: a onc million point interfcrogram at ares-
olution of 800000 (i.e., 4:1 asymmetry) consisting of 10 to 20 co-added scans in a onc to two hour
observation time. The spectral ranges were restricted by optical and electrical filters to about 10000
cm!in an overall coverage from 1850 to 35000 cm'l, Observations were principally in first order
alias, though occasionally second or third order aliases were used: in all cases the highest frequency
observed was usually at about 0.9 times the frequency of the alias edge. Several different types of diode
detectors (Si, UV Si, InSb) were used, as appropriate. Electrical filtering was by analogue means (the
phase shifts of these filters were the dominant contributor to the overall phase error [1]) and the data
was digitally record cd.

The light sources were high current hollow cathode lamps, usually run in Neon or Argon. Typically
filling pressures were 4 Torr (Neon) and 3 Torr (Argon), and the current was usually between 0.75
and onc ampere. The magjority of the observations were made with an uncooled pure iron cathode.

7




Continuum radiation from the red-hot cathode was excluded by careful focusing and by using a tilted
rear window to the lamp to avoid unwanted reflections. Such radiation can easily dominate the photon
noise in the red and infrared spcctral regions which sets the fundamental limit on the quality of the
observations.

I1Ia. Spectra and wavenumber calibration

The resulting spectra contain a large number of lines with widths corresponding to a Doppler tem-
perature around 2450 K (aline with FWHM of 0.100 cm| at 22000 cm1 ). The resolution step was
chosen to give about four points in this linc width. Typical low resolution amplitude and phase spectra
arc given in Figure 3. The phase spectrum is welldefined in the regions where the signal to noise ratio
islarge; however, asthe signal to noise ratio decreases, the phase spectrum becomes increasingly noisy.
Initially the spectra were phase corrected using a low resolution phase spectrum determined from a
transform of 4096 points centred about the central fringe of the interferogram. Overlapping spectra
were taken to obtain continuous high resolution coverage of the spectrum with high signal to noise

ratio. After the line positions were measured, wavenumbers of overlapping regimes of diflerent runs
were compared.

In most cases pairs of FTS spectra did not give reproducible line wavenumbers, as the wavenumber
differences in Figure 4 demonstrate: the scatter of the diflerences at either ¢nd of the wavenumber
region suggests that there is no dispersion between the spectra, but the systematic wavenumber error
for lines between 20000 and 24000 cm'l suggests that the line shapes in onc of the spectra are distorted
sufficiently to produce the wavenumber shifts observed. Line shape distortion can occur in asymmetric
interferograms if the phase is corrected improperly. A comparison with Figure 3 indicates that the lines
in this spectral region arc relatively weak compared to lines below 20000 and above 24000 cm'1 .

IVa. High resolution phase determination

The traditional method for determining the phase uses a transform of 4096 points of the inter-
ferogram centered about the grand maximum to generate a low resolution phase with which the high
resolution complex spectrum can bc rotated into areal, phase corrected, spectrum. In such a pro-
cess, the apodisation and the phase smoothing arc accomplished simultancously. Presuming that the
wavenumber difference.. presented in Figure 3resulted from inadequate phase correction, an alternate

method was suggested in which the phase apodisation and phase smoothing were performed separately.
The low resolution phase correction was performed as follows:

. the interferogram was apod ised to obtain a two-sided interferogram (4192-81920 points in length)

. the phase spectrum was dectermined from the transform for all data points exceeding aspecified
discriminator. This insures that the phase will bc determined only from points with sufficicnt am-
plitude to yield areliable phase estimate.

o the phase spectrum was smoothed by fitting the spectrum to a polynomial with 3-8 terms.
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. the high resolution spectrum was phase corrected with the polynomial representation of the phase.

Pairs of spectra were then compared to check the reproducibility of wavenumbers in overlapping
regions.

1Vb. Apodization

While the phase of a spectrum is assumed to be a slowly varying function of wavenumber, the
resolution width used in the phase determination averages a certain number of data points to obtain
the phase estimate. In a case such as the spectrum presented in Figure 3a, alow resolution phase
estimate allows the phase of the strong lines below 20000 cm'1 and above 24000 cm| to propagate
into the intermediate region where the phase is significantly different but there arc no strong lines, In
all cases a cosine bell apodisation function given by the expression

x

T(z) = [5(1 + cos(0)1 B (14)

was used. Figure 5 presents phase diffcrences between a phase estimate using 81920 points and lower
resolution runs with 40960, 204S0, and 4096 samples. The phase differences arc minimal for the high
resolution phase determination and accurate estimation of the phase in the region between 20000 and
24000 cm'? (where the signal to noise ratio is considerably smaller than clsewhere) requires more than
40000 points. The phase error as a function of apodisation width is displayed in Figure 6, which indicates
that phase errors at the milliradian level require an apodisation width of 40000 points or more.

1Ve. Discriminator

The goal of phase correction is to produce a spectrum in which the error in line position determina-
tion is dominated by noise rather than computational artifacts. For a nearly symmetric interferogram
(I = O) the condition that

5Uphaae < 60nsise

corresponds to a phase error
5¢ < (SIN)],

ic. a phase error smaller than the inverse of the signal to noise ratio Consequently to fully utilize
a spectrum with a signal to noise ratio of 10°, the phase error must be less than 10°radians or 1
milliradian. This condition may be inverted to specify the signal to noise ratio necessary to obtain a
reliable estimate of the phase. Increasing the discriminator reduces the number of lines used in the
phase determination but improves the quality of the phase estimate and hence reduces the phase error.
In the case of the Fe-Ne spectrum changing the discriminator from an intensity of 0.37,4x100.001 1,4,
increases the number of lines by nearly a factor of 10, and increascs the phase error by afactor of 10 as
well (Table 1 and Figure 73).



Ivd, Smoothing by polynomial fitting

Once an accurate estimation of the phase has been obtained it is necessary to smooth this function
to produce a reasonable phase spectrum for all wavenumbers within the spectral window. The usc of a
least square fit to a polynomial has no practical justification other than convenience, and the accuracy of
the fit relative to the order of the polynomial will reflect the complexity of the phase spectrum. Within
the limits of the data a phase fit with afcw terms suflices to describe the data, and the differences
between the curves for three and eight terms arc virtually indistinguishable. Outside the data window
the fits diverge rapidly, especially for higher order polynomials. Quantitative phase error can only be
determined by calculating the phase error for various order polynomials. as demonstrated in Table 2
and Figure 7b, accurate fitting of the phase requires more than 4 terms, but more than seven terms
does not improve the phase fit,

1Ve. Results and improved wavenumber calibration

The phase difference between the low resolution phase spectrum and the |east-square phase spec-
trum (Figure 8) matches the wavenumber differences given in Figure 4, confirming the suspicion that
the wavenumber differences between the two FTS spectra arose from a phase error in onc of the spec-
tra. The relative scale between the two graphs is consistent with the expression

Wéeo

60phaae = 5 (15)

for lines with widths on the order of 0.1 cml (100 milliKayser). Phase correction with the least-square
phase spectrum leads to an improved calibration of the two FTS spectra, as illustrated in Figure 9: the
wavenumber differences cluster in two groups indicating some residual phase discrepancy between the
two data sets; however at this level the error has an insignificant effect for spectra with signa to noise
ratios below 104.

V. Internal Calibration: the Ritz Test

The above discussion focuses on the analysis of several overlapping spectra and through the pro-
cess of intercomparison it was possible to determine that at least onc of the spectra produced incon-
sistent results. A test that could compare various lines within a single spectrum would alow for direct
determination of the phase error without requiring comparison with other similar spectra. The Ritz
combination principle can be applied to a single spectrum to dctcrminc energy levels, and by consid-
cring severa transitions that conncct the same upper and lower states through diflferentintermediate
states it is possible to compare lines from different spectra regions within onc spectrum. If the phase
error is negligible then the difference between the two different transition pathes (A+B) and (C+D)
should not be afunction of onc of the intermediate transition frequencies (line D for example in Figure
10). In contrast, the dependance of the difference on line frequency illustrated in Figure 11, is direct
cvidence that there is some distortion of the line positions in the spectrum. Hindsight, and the relative

10



similarity of the wavenumber differences and phase error displayed in Figures 4 and 8, suggest that the
line position distortion results directly from the phase error crcated by the usc of alow resolution phase
correction method.

Traditionally, the Ritz test has been used to verify the consistency of energy level assignments in
molecular and atomic spectroscopy. In the case of an analyzed spectrum (such as K 1), the Ritz test
can, instead, be used to verify the interna consistency of the data.

V1. Conclusions

The process of phase correcting Fourier transform emission spectra has been reexamined and a
ncw method is proposed and evaluated, The traditional method of determining the phase from a
symmetric low resolution portion of the spectrum is expanded into three steps. phase measurement
from an intermediate resolution symmetric portion of the interferogram, phase discrimination based
on signal-to-noise considerations in the amplitude spectrum, and phase smoothing using least square
fitting to a polynomial expression. The effect of this method of phase determination is evaluated by
comparing several transforms of overlapping spectra, and the dependance on resolution in the phase
determination, discriminator, and order of polynomial arc evalvated numerically. The improvement
in wavenumber calibration between overlapping spectrais very significant and represents an important
step in obtaining consistent and reproducible secondary standard line positions,
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IX. Table List and Figure Captions
1. Table 1. RMS phase error vs. discriminator
2. Table 2, RMS Phase Error vs. Polynomial Order

3. Figure 1. An example of an unequal-sided interferogram and the apodisation function used to
partition the spectrum into real and imaginary components: the resulting instrumental linc shape
will have a symmetric sine function real part and an antisymmetric cosine function imaginary part.

4. Figure 2. Construction of the real and imaginary components of the instrumental line shape func-
tion for aone-sided interferogram recorded with a Fourier transform spectrometer: each plot is
athree dimensional represcntation of acomplex function in either the spectral or interferogram
domain (note the divergence of the tick marks and the axes is a result of the perspective used by
the plotting package). (a) Symmetric component of interferogram apodisation function, (b) real,
even instrumental line shape function (Fourier transform of (a), (c) antisymmetric component of
interfcrogram apodisation function, (d) imaginary, odd instrumental line shape function (Fourier
transform of (c), (c) asymmetic intcrferogram apodisation function (sum of (a) and (c)) for a one-
sided interferogram, (f) complex instrumental line shape (Fourier transform of (c), and vector sum
of(b) and (d)) — notice that if (c) is inverted, (d) is also inverted, and consequently the handedness
of (f) will be reversed.

5. Figure 3. Typical low resolution (8192 points) amplitude (a) and phase (b) spectra emission spectra
of aFe-Ar hollow cathode lamp. The phase spectrum is a well defined, smooth function when
the signal-to-noise ratio in the amplitude spectrum is nonzero, and in regions where the spectral
intensity is low the phase determination is noisy. If the same spectra were measured with a typical
number of points (128-256), then the phase spectra from the strong lines would be averaged into
other regions. corrected with low resolution phase spectra.

6. Figure 4. Wavenumber diflerences for two overlapping spectra corrected with low resolution phase
spectra.

7. Figure 5. Phase differences between phase spectrum estimates using 81920,40960,20480, and4192
samples.

8. Figure 6. Phase error at 20000 cm1 as a function of apodisation width.

9. Figure 7. RMS Phase error: () as a function of discriminator magnitude, (b) as a function of the
order of the polynomial.”
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10. Figure 8. The phase differcnce between the low resolution phase spectrum and the |east-square
phase spectrum.

11. Figure 9. Wavenumber differences for two overlapping spectra corrected with least squares phase
spect ra

12. Figure 10. Wavenumber differences resulting from a Ritz test of severa Fel lines.
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Table 1: RMS phase error vs. discriminator

Discriminator Setting RMS Phase Error (mrad) Number of Linesin Fit

0.3 0.025 23
0.1 0.057 88
0.03 0.097 220
0.01 0.179 476
0.003 0.450 1076
0.001 0.800 2263

Table of RM S phase error as afunction of the amplitude of the discriminator setting. A seven term
least square phase polynomia was fitted for each discriminator setting.
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Table 2: RM S Phase Error vs. Polynomial Order

Number of Terms in Polynomial

Lo N oo o1 B ow N

RMS Phase Error (mrad)
57.0
20.0
39
1.85
1,80
1.78
1.76

Table of RM S phase error versus number of terms in the least square phase polynomial with a 3%
discriminator cutoff. An 80000 sample interferogram was transformed and 220 spectral lines were used

in the fit.
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Unequal-sided interferogram (1:4 asymmetry)

OPD (cm)
Apodised Function (sum of even and odd parts) /
-1 0 1 L OPD (cm)
Even Part of Apodisation Function
-L 0 L OPD (cm)

Odd Part of Apodisation Function /
-L -1

\ / 0 ! L OPD (cm)

Apodised interferogram (mean subtracted)

OPD (cm)

Figure J. Apodisation function and interferogram before (top) and after apodisation (bottom).
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Figure 8. The phase difference between the low resolution phase spectrum and the |east-square
phase spectrum: (a) actual, (b) with straight line in (a) subracted out.
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Figure 9. Wavenumber differences for two overlapping spectra corrected with

Jeast square phase specira.
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Figure 10. Wavenumber differences resulting from a Ritz test of several Fel lines.
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